Reactions of 5-Chloro-1,2,3-Thiadiazolium Salts with Activated Methylene Compounds

Gerrit L'abbé,* Lieve Bastin, Wim Dehaen, Suzanne Toppet, Pieter Delbeke, Dominique Vlieghe and Luc Van Meervelt
Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Leuven (Heverlee), Belgium

The N-3 and N-2 methylated 1,2,3-thiadiazolium tetrafluoroborates 3 and 4 react with aliphatic activated methylene ketones and esters in the presence of a base to give the substitution products 7-11 and 18-24. Under similar conditions activated methylene azoles afford products formulated by NMR analysis as $\mathrm{N}-\mathrm{S} \ldots \mathrm{O}$ rotamers (25, 26), $\mathrm{N}-\mathrm{S} \ldots \mathrm{N}$ rotamers (12-15, 27-29), or a mixture of both (16, 17, 30). The X-ray crystal structure analysis of product 21, derived from the thiadiazolium salt 4 and 2,2-dimethyl-1,3-dioxane-4,6-dione, reveals a nearly linear N-S... O sequence (169°) and a short S . . O Contact ($2.37 / 2.34 \AA$) for the two independent molecules.

1,2,3-Thiadiazoles bearing a chloro substituent at the 5 -position are readily prepared from chloroacetaldehyde or chloromethyl ketones by oxidative cyclization of the corresponding N-tosyl or N-acyl hydrazones with thionyl chloride (Hurd and Mori's method). ${ }^{1,2}$ They can be methylated at N-2 and/or N-3 depending on the substituent at $\mathrm{C}-4 .{ }^{3}$ Thus, the parent compound 1 is methylated exclusively at $\mathrm{N}-3$ to give the salt 3 , whereas compound 2 with its bulky substituent at $\mathrm{C}-4$ furnishes the salt $\mathbf{4}$ as a result of methylation at $\mathrm{N}-2$. Both salts $\mathbf{3}$ and $\mathbf{4}$ are of interest for the construction of λ^{4}-thiapentalenes 5 and 6 which are characterized by a four-electron three-centre bonding $\mathrm{N}-\mathrm{S}-\mathrm{Z} .{ }^{4}$
The first synthetic routes to 6 -oxa- $6 a \lambda^{4}$-thia-1,2-diazapentalenes and $6 \mathrm{a}^{4}$-thia-1,2,6-triazapentalenes were reported by Reid and co-workers. ${ }^{5}$ Later, Capuano et al. ${ }^{6}$ obtained the two ring systems 5a and 6a by treating ester substituted thioketenes with diazomethane and showed by X-ray analysis that they exhibit short sulfur \cdots oxygen contacts ($2.5-2.6 \AA$). This paper describes a new method for the synthesis of compounds 5a, b and 6a, b.

5a $Z=0$
5b $Z=N R$

6a $Z=0$
6b $Z=N R^{\prime}$

The treatment of 3-methylthiadiazolium tetrafluoroborate 3 with 1 equiv. of pentane-2,4-dione, methyl acetoacetate, dimethyl malonate, 2,2-dimethyl-1,3-dioxane-4,6-dione (Meldrum's acid) ${ }^{7}$ and ethyl cyanoacetate in the presence of potassium tert-butoxide yielded products $7-11$. They were characterized by IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and mass spectroscopy and microanalysis. In particular, compound 7 shows two singlets for the acetyl protons in the ${ }^{1} \mathrm{H}$ NMR spectrum $(\delta$

2.47 and 2.54) as well as two acetyl carbon absorptions in the ${ }^{13} \mathrm{C}$ NMR spectrum (Me at $\delta \quad 27.5 / 31.5$ and CO at 187.5/190.2). The same phenomenon is observed for the carboxy groups of compounds 9 and 10 (see Tables 1 and 2). We attribute the magnetic non-equivalence of these groups in the NMR spectra to restricted rotation about $C-5$ due to the $S \cdots O$ interaction. Indeed, the X and Y proton signals of compounds 7 and 9 coalesced in $\left[{ }^{2} \mathrm{H}_{6}\right]$ dimethyl sulfoxide upon raising the temperature to $40^{\circ} \mathrm{C}$.

The salt 3 also reacted under basic conditions with (4-phenyl-thiazol-2-yl)acetonitrile, ethyl (4-phenylthiazol-2-yl)acetate, (benzothiazol-2-yl)acetonitrile and ethyl (benzothiazol-2-yl)acetate to give the mesoionic compounds $12-15$ having the $\mathrm{N}-\mathrm{S} \cdot \mathrm{N}$ sequence. The structures 13 and 15 were preferred over the alternative $\mathrm{N}-\mathrm{S} \cdots \mathrm{O}$ rotamers by a consideration of the carbonyl absorptions in the ${ }^{13} \mathrm{C}$ NMR spectra. These resonate at higher field ($\delta 163$) than in $11(\delta 168)$ and at the same position as the free ester groups in 8 and 9 (Table 2). The influence of a heterocyclic ring (thiazole or oxazole) on the $\mathrm{C}=\mathrm{O}$ chemical shift is less than 2 ppm .

When ethyl (5-phenyloxazol-2-yl)acetate and ethyl (benz-oxazol-2-yl)acetate were combined with the salt 3 , the corresponding products 16 and 17 were shown by ${ }^{1} \mathrm{H}$ NMR spectroscopy to be composed of two rotamers in ratios of $80: 20$ and 73:27 respectively. The major rotamers, 16a and 17a, have the $\mathrm{N}-\mathrm{S} \cdot \mathrm{O}$. O sequence as shown by the carbonyl absorption at $\delta \sim 167$, while 17 b absorbs at $\delta 163$. The poor solubility of compound 16 in dimethyl sulfoxide prevented the ${ }^{13} \mathrm{C}$ NMR characterization of the minor rotamer; its presence, however, was inferred from the ${ }^{1} \mathrm{H}$ NMR spectrum where two signals are observed for the NMe, oxazole 4-H and thiadiazole 4-H protons (Table 1). The thiadiazole 4-H absorption of 16a ($\delta 9.60$) is deshielded by the oxazole ring and occurs at a lower field than that of 16 b ($\delta 9.54$). The same holds for compound 17 where the $4-\mathrm{H}$ of the two rotamers absorb at $\delta 9.81$ and 9.62 .

Table $1 \quad{ }^{1} \mathrm{H}$ NMR chemical shifts (δ values) of the heterocycles

No.	Solvent	NMe	4-H	Bu^{t}	Other absorptions
7	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	4.43	9.81		2.47 ($3 \mathrm{H}, \mathrm{s}$), $2.54(3 \mathrm{H}, \mathrm{s})$
8	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	4.42	9.42		2.47 (3 H, s), $3.77(3 \mathrm{H} \mathrm{~s}$,
9	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	4.38	9.41		$3.67(3 \mathrm{H}, \mathrm{s}), 3.72(3 \mathrm{H}, \mathrm{s})$
10	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	4.47	9.57		1.64 ($6 \mathrm{H}, \mathrm{s}$)
11	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	4.33	9.00		$1.3(3 \mathrm{H}, \mathrm{t}), 4.2(2 \mathrm{H}, \mathrm{q})$
12	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	4.35	9.12		$7.39,7.52$ and $8.08(5 \mathrm{H}, 2 \mathrm{t}+\mathrm{d}, \mathrm{Ph}), 7.79(1 \mathrm{H}, \mathrm{s}$, thiazole $5-\mathrm{H})$
13	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	4.42	9.42		1.40 ($3 \mathrm{H}, \mathrm{t}$) , $4.35(2 \mathrm{H}, \mathrm{q}), 7.37,7.59$ and $8.11(5 \mathrm{H}, 2 \mathrm{t}+\mathrm{d}, \mathrm{Ph}), 7.71(1 \mathrm{H}, \mathrm{s}$, thiazole 5-H)
14	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	4.36	9.19		$7.24,7.42,7.82$ and $7.93(4 \mathrm{H}, 2 \mathrm{t}+2 \mathrm{~d})$
15	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	4.44	9.49		1.41 (3 H, t), $4.36(2 \mathrm{H}, \mathrm{q}), 7.21,7.40,7.89$ and $7.91(4 \mathrm{H}, 2 \mathrm{t}+2 \mathrm{~d})$
16a	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	4.39	9.60		1.39 (t), 4.30 (q), 7.27, 7.44 and 7.69 ($2 \mathrm{t}+\mathrm{d}, \mathrm{Ph}$), 7.62 (s, oxazole 4-H)
16b	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	4.37	9.54		7.80 (s, oxazole 4-H)
17a	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	4.44	9.81		1.34 (t), 4.33 (q), 7.20, 7.25, 7.56 and $7.58(2 t+2 d)$
17b	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	4.41	9.62		4.30 (q), 7.61 (d)
18	CDCl_{3}	3.95		1.43	2.49 (6 H, s)
19	CDCl_{3}	3.94		1.43	2.42 ($3 \mathrm{H}, \mathrm{s}$), $3.85(3 \mathrm{H}, \mathrm{s})$
20	CDCl_{3}	3.83		1.38	3.82 ($6 \mathrm{H}, \mathrm{s}$)
21	CDCl_{3}	4.16		1.56	1.78 (6 H, s)
22	CDCl_{3}	3.95		1.56	$1.38(3 \mathrm{H}, \mathrm{t}), 4.35(2 \mathrm{H}, \mathrm{q})$
23	CDCl_{3}	3.83		1.45	$2.34(3 \mathrm{H}, \mathrm{s}), 6.54(1 \mathrm{H}, \mathrm{s})$
24	CDCl_{3}	3.80		1.39	$3.65(3 \mathrm{H}, \mathrm{s}), 5.76(1 \mathrm{H}, \mathrm{s})$
25	CDCl_{3}	3.84		1.16	$1.19(3 \mathrm{H}, \mathrm{t}), 4.20(2 \mathrm{H}, \mathrm{q}), 7.32,7.41$ and $7.66(5 \mathrm{H}, 2 \mathrm{t}+\mathrm{d}, \mathrm{Ph}), 7.45(1 \mathrm{H}, \mathrm{s}$, oxazole 4-H)
26	CDCl_{3}	3.85		1.11	1.17 ($3 \mathrm{H}, \mathrm{t}$), 4.20 ($2 \mathrm{H}, \mathrm{q}$), 7.3-7.8 ($4 \mathrm{H}, 3 \mathrm{~m}$)
27	CDCl_{3}	3.92		1.64	$7.30(1 \mathrm{H}, \mathrm{s}$, thiazole 5-H), 7.39, 7.50 and $7.95(5 \mathrm{H}, 2 \mathrm{t}+\mathrm{d}, \mathrm{Ph})$
28	CDCl_{3}	3.94		1.64	$7.26,7.41,7.76$ and $7.87(4 \mathrm{H}, 2 \mathrm{t}+2 \mathrm{~d})$
29	CDCl_{3}	3.93		1.43	$1.40(3 \mathrm{H}, \mathrm{t}), 4.38(2 \mathrm{H}, \mathrm{q}), 7.24,7.39,7.77$ and $7.88(4 \mathrm{H}, 2 \mathrm{t}+2 \mathrm{~d})$
30a	$\mathrm{CDCl}_{3}{ }^{\text {a }}$	3.85		1.15 1.50	$1.2(3 \mathrm{H}, \mathrm{t}), 4.20(2 \mathrm{H}, \mathrm{q}), 7.71$ (thiazole $5-\mathrm{H}), 7.3-7.6$ and $8.0(\mathrm{~m}+\mathrm{d}, \mathrm{Ph})$
30b	$\mathrm{CDCl}_{3}{ }^{\text {a }}$	4.0		1.50	$1.4(3 \mathrm{H}, \mathrm{t}), 4.41(2 \mathrm{H}, \mathrm{q}), 7.28$ (thiazole 5-H), 7.3-7.6 and $8.0(\mathrm{~m}+\mathrm{d}, \mathrm{Ph})$

${ }^{a}$ Recorded at $-35^{\circ} \mathrm{C}$.

X
12 CN
$13 \mathrm{CO}_{2} \mathrm{Et}$

16b

17b

Irradiation of the signal at $\delta 9.81$ caused the 4-H resonance at $\delta 9.62$ to decrease in intensity by saturation transfer, showing that the two rotamers are in dynamic equilibrium.

In a second phase of this research we have investigated the reactions of 4 -tert-butyl-2-methyl-1,2,3-thiadiazolium tetrafluoroborate $\mathbf{4}$ with the same activated methylene compounds as mentioned above. The aliphatic activated methylene compounds and Meldrum's acid ${ }^{7}$ yielded the thiapentalenic derivatives 18-22, and compounds 23 and 24 were obtained by acid catalysed methanolysis of 18 and 19 (or 20), respectively. In contrast to the mesoionic compounds $\mathbf{7 , 9}$ and 10 , the ${ }^{1} \mathrm{H}$ NMR

spectra of 18, 20 and 21 do not differentiate between the two functional groups at room temperature (see Tables 1 and 2), indicating free rotation of the side-chain at the 5 -position.

In order to gain more insight into the structural characteristics of such compounds, a single crystal of 21 was subjected to X-ray analysis and the results are shown in Fig. 1. The unit cell contains two pairs of independent molecules (denoted a and b) which differ in the conformation of the dioxane ring, with CMe_{2} lying above or below the ring plane, while the bond lengths and angles are only slightly affected. Each conformation influences the positions of the other atoms. For instance, in conformation (a), where the CMe_{2} group lies above the dioxane plane, the oxygen atoms $\mathrm{O}(8 \mathrm{a})$ and $\mathrm{O}(10 \mathrm{a})$ are tilted downwards. This, in turn, determines the orientation of the tert-butyl group and the position of the $\mathrm{S}(1 \mathrm{a})$ atom. Indeed, the atom O(10a) lies in an extension of the $\mathrm{C}(15 \mathrm{a})$ $\mathrm{C}(16 \mathrm{a})$ bond, allowing the other two methyls of the tert-butyl group to adopt the most favourable orientation for minimum interaction with $\mathrm{O}(10)$; and this is also rendered possible by distortion of the tert-butyl group away from the dioxane ring, $\mathrm{C}(5 \mathrm{a})-\mathrm{C}(4 \mathrm{a})-\mathrm{C}(15 \mathrm{a})=132^{\circ}$. The sulfur atom $\mathrm{S}(\mathrm{la})$ follows the movement of $\mathrm{O}(8 \mathrm{a})$ below the dioxane ring in order to optimize a close contact interaction. As a result, the mean deviation of

Table $2 \quad{ }^{13} \mathrm{C}$ NMR chemical shifts (δ values) of the heterocycles

No.	Solvent	NMe ${ }^{\text {a }}$	C-4	C-5	$\mathrm{C}_{5}-\mathrm{C}$	CO...S	Free CO	Other absorptions
7	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	45.6	133.3	160.4	110.1	190.2	187.5	27.5, 31.5
8	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	45.6	132.9	160.5	96.5	188.0	165.1	26.3, 50.5
9	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	45.7	132.3	164.8	82.0	169.2	164.3	50.3, 51.6
10	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	46.1	133.8	160.8	77.5	165.1	160.1	26.0, 103.6
11	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	45.7	130.6	163.9	60.1	168.1		14.5, 60.3, $117.8(\mathrm{CN})$
12	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}^{\text {b }}$	45.0	129.6	156.7	66.0			107.3, 152.8 and 164.2 (thiazole), $118.6(\mathrm{CN}), 125.5$, $127.5,128.3 \text { and } 133.5(\mathrm{Ph})$
13	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	45.5	131.4	156.4	88.6		163.4	14.7, 59.4 (Et), 109.2, 150.8 and 164.4 (thiazole), 125.7, 127.5, 128.7 and 134.2 (Ph)
14	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	45.6	131.0	158.1	65.8			$119.2(\mathrm{CN}), 119.5,122.1,123.0,126.3,132.0$ and 152.8 (benzene), 164.3 (thiazole C-2)
15	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}^{\text {c }}$	45.6	131.8	157.8	88.6		163.5	14.6 and 59.4 (Et), 118.8, 121.2, 122.3, 125.4, 132.9 and 150.5 (benzene), 164.4 (thiazole C-2)
16a	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	45.4	130.9	$160.2^{\text {d }}$	79.5	167.0		14.4 and 59.8 (Et), 122.5, 146.5 and 159.6^{d} (oxazole), 122.9, 127.1, 128.4 and 128.8 (Ph)
17a	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	45.9	132.1	$161.5^{\text {d }}$	78.8	167.7		14.7 and 60.4 (Et), 109.6, 117.2, 122.5, 123.8, 142.0 and 149.0 (benzene), $162.1^{\text {d }}$ (oxazole C-2)
17b	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	45.6	132.5	160.5	79.8		163.3	14.7 and 59.0 (Et), 109.8, 116.6, 122.4, 123.9, 140.9 and 149.5 (benzene), 164.7 (oxazole C-2)
18	CDCl_{3}	39.5	153.9	154.1	114.8	189.1 lbr	189.1 br	27-29 (br Me), 30.3 and 36.3 ($\mathrm{Bu}^{\text {l }}$)
19	CDCl_{3}	39.4	153.4	154.1	104.2	180.3	169.1	22.4, 30.1, 36.1, 52.0
20	CDCl_{3}	40.1	152.0	158.7	89.7	168.4	168.4	29.8 and 35.4 ($\mathrm{Bu}^{\text {l }}$), 52.6 (OMe)
21	CDCl_{3}	41.9	159.0	159.0	82.0	164.1	164.1	25.8, 29.9, 37.3, 103.3
22	CDCl_{3}	40.4	152.8	160.0	67.5	170.9		14.5 and $62.5(\mathrm{Et}), 30.2$ and $34.7\left(\mathrm{Bu}^{\text {t }}\right.$), 119.4 (CN)
23	CDCl_{3}	39.0	151.6	155.3	97.7	182.0		24.2, 28.9, 34.5
24	CDCl_{3}	40.3	151.9	158.2	85.8	170.3		28.6 and $34.2\left(\mathrm{Bu}^{\prime}\right)$, 51.9 (OMe)
25	CDCl_{3}	39.8	151.7	159.9	83.8	170.1		14.5 and $61.6(\mathrm{Et}), 29.6$ and $34.8\left(\mathrm{Bu}^{t}\right), 122.6,151.3$ and 157.9 (oxazole)
26	CDCl_{3}	40.0	151.9	$159.9^{\text {d }}$	83.3	169.6		14.5 and $61.7(\mathrm{Et}), 29.6$ and $35.0\left(\mathrm{Bu}^{t}\right), 110.5,119.9$, $124.0,125.0,141.6$ and 150.6 (benzene), 160.8^{d} (oxazole C -2)
27	CDCl_{3}	40.0	151.7	151.8	73.6			30.4 and $34.8\left(\mathrm{Bu}^{t}\right), 109.9,153.1$ and 166.2 (thiazole), 121.2 (CN)
28	CDCl_{3}	39.9	151.9	152.8	72.9			30.4 and $34.8\left(\mathrm{Bu}^{t}\right), 119.5,121.9,123.8,126.0,133.5$ and 150.8 (benzene), 121.1 (CN), 165.8 (thiazole C-2)
29	CDCl_{3}	40.3	154.1	155.0	95.1		167.1	14.6 and 60.8 (Et), 30.4 and 36.9 ($\mathrm{Bu}^{\text {t }}$), 119.3, 121.4, 123.3, 125.6, 134.8 and 149.7 (benzene), 164.2 (thiazole C-2)
30a	$\mathrm{CDCl}_{3}{ }^{\text {e }}$	39.5	151.3	159.0	87.5	168.9		14.4 and $61.5(\mathrm{Et}), 29.9$ and $35.1\left(\mathrm{Bu}^{t}\right), 116.1,153.1$ and 164.4 (thiazole)
30b	$\mathrm{CDCl}_{3}{ }^{\text {e }}$	40.5	153.8	152.2	95.3		166.5	14.4 and 60.3 (Et), 30.2 and $36.9\left(\mathrm{Bu}^{t}\right), 110.0,150.5$ and 163.8 (thiazole)

${ }^{a}{ }^{1} J_{\mathrm{CH}} 144-146 \mathrm{~Hz}$ for $7-17$ and ${ }^{1} J_{\mathrm{CH}} 140.5-143.5 \mathrm{~Hz}$ for $18-30 .{ }^{b}$ Recorded at $80^{\circ} \mathrm{C}$. ${ }^{c}$ Recorded at $40{ }^{\circ} \mathrm{C}$. ${ }^{d}$ The reverse assignment is possible. ${ }^{e}$ Recorded at $-35^{\circ} \mathrm{C}$.
the eight atoms $1-8$ from the best plane through the atoms is $0.093 \AA$.
The $\mathrm{N}(2)-\mathrm{S}(1) \cdots \mathrm{O}(8)$ atoms are almost colinear $\left(169^{\circ}\right)$ and the $\mathrm{S}(1) \cdots \mathrm{O}(8)$ distance $(2.37 / 2.34 \AA$) is considerably shorter than the sum of the corresponding van der Waals radii ($3.2 \AA$), and also shorter than the Huggins constant energy distance of $2.58 \AA{ }^{8}{ }^{8}$ showing a weak covalent bond of $2.6 / 3.0 \mathrm{kcal} \mathrm{mol}^{-1} .{ }^{*}$ The bond lengths $\mathrm{C}(4)-\mathrm{C}(5), \mathrm{C}(5)-\mathrm{C}(6)$ and $\mathrm{C}(6)-\mathrm{C}(7)$ are nearly equal (1.42-1.43 \AA) and intermediate between a single and double bond. This is also the case for the $\mathrm{N}(3)-\mathrm{C}(4)$ bond ($1.33 \AA$), whereas $\mathrm{N}(2)-\mathrm{N}(3)(1.31 / 1.30 \AA)$ has pronounced double bond character. ${ }^{9}$ From these results and the fact that $C(7)-O(8)(1.23 \AA)$ is longer than $C(9)-O(10)(1.20 \AA)$, we conclude that 21 is best represented by the canonical structures 21A and 21B, and that 21C is only a minor contributor to the overall structure of the molecule.

When activated methylene azoles were treated with salt 4, two types of thiapentalenes were obtained; namely the oxazole derivatives 25 and 26 with an N-S $\cdots \mathrm{O}$ sequence and the

[^0]thiazole derivatives 27-29 with an $\mathrm{N}-\mathrm{S} \cdot . \mathrm{N}$ sequence. The oxazole derivatives show $\mathrm{C}=\mathrm{O}$ carbon absorptions at $\delta \sim 170$ in the ${ }^{13} \mathrm{C}$ NMR spectra, exactly at the position where our reference compounds 22 and 24 absorb (Table 2). The $\mathrm{C}=\mathrm{O}$ resonance of the benzothiazole derivative 29, on the contrary, is found at $\delta 167$. Another useful criterion to distinguish between the $\mathrm{N}-\mathrm{S} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{S} \cdots \mathrm{N}$ rotamers is the position of the tert-butyl protons in the ${ }^{1} \mathrm{H}$ NMR spectra. For 25 and 26 they lie in the shielding region of the aromatic oxazole, which is assumed to stand perpendicular to the thiapentalene ring. As a consequence, they absorb at higher field (δ 1.1) than in compounds 24 and 29 ($\delta 1.4$).
It is worth pointing out that the barrier to rotation around the exocyclic double bond of compounds 25-29 is low and that free rotation of the side chain occurs at room temperature; hence, the indicated structures represent the most abundant rotamers present in solution. To demonstrate this contention we have cooled a chloroform solution of compound 29 and observed a broadening of the absorptions in the ${ }^{1} \mathrm{H}$ NMR spectrum, including that of the tert-butyl protons at $\delta 1.43$. At $-60^{\circ} \mathrm{C}$ a small broad signal appears at $\delta 1.14$ where the $\mathrm{N}-\mathrm{S} \cdots \mathrm{O}$ rotamer is expected to absorb.

Fig. 1 Structures of the two crystallographically independent molecules of 21

Compound 30, prepared from salt 4 and ethyl (4-phenyl-thiazol-2-yl)acetate, is the only case where the two rotamers were observed in comparable concentrations by NMR in $\left[{ }^{2} \mathrm{H}\right]$ chloroform. At room temperature, the product exhibits broad signals in the ${ }^{1} \mathrm{H}$ NMR spectrum, but at $-35^{\circ} \mathrm{C}$ the rotamers 30a and 30b are clearly distinguished and characterized by the two criteria discussed above (see Tables 1 and 2). The coalescence temperature is situated between 0 and $-15^{\circ} \mathrm{C}$. It occurs at $-30^{\circ} \mathrm{C}$ in $\left[{ }^{2} \mathrm{H}_{3}\right.$]acetonitrile, indicating that rotation is faster in a polar solvent. Also, the distribution

26 X

$31 R=H$

$33 R=H$

30a: 30b is solvent dependent; the ratios are 45 : 55 in chloroform at $-35^{\circ} \mathrm{C}, 27: 73$ in acetonitrile at $-45^{\circ} \mathrm{C}$ and $37: 63$ in toluene at $-35^{\circ} \mathrm{C}$.
Finally, we have found that cyclohexane-1,3-diones react differently with the salts 3 and 4, giving the mesoionic 1,2,3thiadiazoles $\mathbf{3 1} / \mathbf{3 2}$ and the oxathioles $\mathbf{3 3} / 34$, respectively. For a detailed discussion of the spectroscopic and crystal structure data see ref. 10 .

Experimental

M.p.s were determined using a Reichert Thermovar apparatus. IR spectra were recorded on a Perkin-Elmer 1720 FT spectrometer, NMR spectra on a Bruker WM-250 or AMX-400 spectrometer, and mass spectra (EI) on a Hewlett Packard 5989A or Kratos MS50 TC (for high resolution) instrument, both operating at 70 eV . The NMR data are summarized in Tables 1 and $2(J$ values are given in Hz).
The activated methylene azoles were prepared according to the literature methods. ${ }^{11}$ The thiadiazoles 1 and 2 were synthesized by the method of Hurd and Mori, ${ }^{1 a .2}$ and the salt 3 by methylation of thiadiazole 1 with Meerwein's reagent as
previously reported. ${ }^{3}$ The salt 4 was similarly prepared from thiadiazole 2 in 69% yield, m.p. $132-137^{\circ} \mathrm{C}$ (from EtOH); $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.5\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right)$ and $4.6(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$; $\delta_{\mathrm{c}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 28.0$ and 35.1 ($\left.\mathrm{Bu}^{\prime}\right), 47.5$ ($\mathrm{NMe},{ }^{1} J_{\mathrm{CH}} 147$), 152.0 (C-5) and 164.6 (C-4) (Found: C, 30.2; H, 4.2. $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{BClF}_{4} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{C}, 30.19 ; \mathrm{H}, 4.34 \%$).

Typical Reaction.-Thiadiazolium salt 3 or $\mathbf{4}(2 \mathrm{mmol})$ was added to a suspension of the activated methylene compound ($2-2.2 \mathrm{mmol}$) and potassium tert-butoxide (4.4 mmol) in dry acetonitrile ($20 \mathrm{~cm}^{3}$), and the mixture was stirred at room temperature for 15 min . After removal of the solvent under reduced pressure, the residue was chromatographed on silica gel with the appropriate eluent (vide infra). The products obtained are listed below.

5-(Diacetylmethylene)-3-methyl-4,5-dihydro-1,2,3-thiadiazol-3-ium-4-ide 7.-Prepared from pentane-2,4-dione and salt 3 in 52% yield, eluent ethyl acetate-methanol ($30: 1$), m.p. $184^{\circ} \mathrm{C}$ (orange crystals from EtOH); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3147 \mathrm{~m}, 1600 \mathrm{~s}$ and $1520 \mathrm{~s} ; \mathrm{m} / \mathrm{z} 198\left(\mathrm{M}^{+}, 28 \%\right)$, $183\left(\mathrm{M}^{+}-\mathrm{Me}, 34\right), 141$ $\left(\mathrm{M}^{+}+\mathrm{CH}_{2} \mathrm{O}-\mathrm{Me}, 66\right) 43\left(\mathrm{MeN}_{2}{ }^{+}\right.$or $\left.\mathrm{MeCO}^{+}, 100\right)$ and 42 $\left(\mathrm{CH}_{2} \mathrm{~N}_{2}{ }^{+}{ }^{+}\right.$, 17) (Found: C, 48.3; H, 5.1. $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires C, 48.47 ; H, 5.08%).

5-[Acetyl(methoxycarbonyl)methylene]-3-methyl-4,5-di-

 hydro-1,2,3-thiadiazol-3-ium-4-ide 8.-Prepared from methyl acetoacetate and salt 3 in 69% yield, eluent ethyl acetatemethanol (5:1), m.p. $150^{\circ} \mathrm{C}$ (orange crystals from EtOH); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3145 \mathrm{~m}, 1655 \mathrm{~s}$ and $1550 \mathrm{~s} ; m / z 214\left(\mathrm{M}^{+}, 51 \%\right)$, $199\left(\mathrm{M}^{+}+\mathrm{Me}, 62\right), 183\left(\mathrm{M}^{+}-\mathrm{OMe}, 13\right), 169$ (38), 141 $\left(\mathbf{M}^{+}{ }^{+}-\mathrm{CH}_{2} \mathrm{CO}-\mathrm{MeO}, 50\right), 66(11), 43\left(\mathrm{MeN}_{2}{ }^{+}\right.$or MeCO^{+}, 100) and $42\left(\mathrm{CH}_{2} \mathrm{~N}_{2}{ }^{-+}, 30\right)$ (Found: C, 44.95 ; H, 4.7. $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires C, $44.85 ; \mathrm{H}, 4.71 \%$).5-[Bis(methoxycarbonyl)methylene]-3-methyl-4,5-dihydro-1,2,3-thiadiazol-3-ium-4-ide 9.-Prepared from dimethyl malonate and salt 3 in 75% yield, eluent diethyl ether-methanol (10:1), m.p. $182^{\circ} \mathrm{C}$ (orange crystals from EtOH); $v_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3137 \mathrm{~m}, 1655 \mathrm{~s}$ and $1585 \mathrm{~s} ; \mathrm{m} / \mathrm{z} 230\left(\mathrm{M}^{+}, 98 \%\right), 199$ ($\mathrm{M}^{++}-\mathrm{CO}, 92$), $172(89), 169\left(\mathrm{M}^{++}-\mathrm{MeO}-\mathrm{CH}_{2} \mathrm{O}, 100\right)$, 141 ($\mathrm{M}^{++}-\mathrm{CO}_{2} \mathrm{Me}-\mathrm{CH}_{2} \mathrm{O}, 67$), 140 (26), 114 (83), 69 (27), 66 (24), $43\left(\mathrm{MeN}_{2}{ }^{+}, 85\right)$ and $42\left(\mathrm{CH}_{2} \mathrm{~N}_{2}{ }^{-+}, 85\right)$ (Found: C, 41.6; $\mathrm{H}, 4.3 . \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 47.71 ; \mathrm{H}, 4.38 \%$).

5-(2,2-Dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)-3-methyl-4,5-dihydro-1,2,3-thiadiazol-3-ium-4-ide 10.-Prepared from 2,2-dimethyl-1,3-dioxane-4,6-dione and salt 3 in 76% yield, eluent chloroform-methanol (15:1), m.p. $206^{\circ} \mathrm{C}$ (orange crystals from EtOH); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3120 \mathrm{~s}, 1695 \mathrm{~s}$ and 1625 s ; $m / z 242\left(\mathbf{M}^{+}, 13 \%\right), 185\left(\mathbf{M}^{+}-\mathrm{Me}-\mathrm{CMe}_{2}, 12\right), 140$ ($\mathrm{M}^{++}-\mathrm{Me}_{2} \mathrm{CO}-\mathrm{CO}_{2}, 79$), 94 (19), 69 (12), 53 (45), 43 $\left(\mathrm{MeN}_{2}{ }^{+}, 100\right)$ and $42\left(\mathrm{CH}_{2} \mathrm{~N}_{2}{ }^{+}{ }^{+}\right.$, 63) (Found: C, 44.8; $\mathrm{H}, 4.2$. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 44.62 ; \mathrm{H}, 4.16 \%$).

5-[Cyano(ethoxycarbonyl)methylene]-3-methyl-4,5-dihydro-1,2,3-thiadiazol-3-ium-4-ide 11.-Prepared from ethyl cyanoacetate and salt 3 in 81% yield, eluent chloroform-methanol ($10: 1$), m.p. $145^{\circ} \mathrm{C}$ (lit., ${ }^{6} 143{ }^{\circ} \mathrm{C}$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3082 \mathrm{~m}$, 2188 s and 1631s; $m / z 211\left(\mathrm{M}^{+}, 47 \%\right), 183\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{4}, 48\right)$, $166\left(\mathrm{M}^{++}\right.$- OEt, 47), $139\left(\mathrm{M}^{+}+\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{CO}_{2}, 69\right), 114(16)$, 93 (12), 91 (14), 64 (11), 52 (12), $46\left(\mathrm{EtOH}^{+}, 100\right), 43\left(\mathrm{MeN}^{+}{ }^{+}\right.$, $78)$ and $42\left(\mathrm{CH}_{2} \mathrm{~N}_{2}{ }^{++}, 40\right)$.

5-[Cyano(4-phenylthiazol-2-yl)methylene]-3-methyl-4,5-dihydro-1,2,3-thiadiazol-3-ium-4-ide 12.-Prepared from (4-phenylthiazol-2-yl)acetonitrile and salt 3 in 72% yield, eluent chloroform-methanol ($10: 1$), m.p. $243-246{ }^{\circ} \mathrm{C}$ (orange crystals
from EtOH$) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3096 \mathrm{~m}$ and 2177s; $m / z 298\left(\mathrm{M}^{+}\right.$, 45%), 134 ($\mathrm{PhC}-\mathrm{CHS}^{+}, 31$), 89 (23), $77\left(\mathrm{Ph}^{+}, 11\right), 69$ (12), 63 (18), 51 (17), 50 (11), $45(60), 43\left(\mathrm{MeN}_{2}{ }^{+}, 100\right)$ and 42 $\left(\mathrm{CH}_{2} \mathrm{~N}_{2}{ }^{+}\right.$, 35) (Found: C, 56.6; H, 3.7. $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~S}_{2}$ requires C, $56.36 ; \mathrm{H}, 3.38 \%$).

5-[(Ethoxycarbonyl)(4-phenylthiazol-2-yl)methylene]-3-methyl-4,5-dihydro-1,2,3-thiadiazol-3-ium-4-ide 13.-Prepared from ethyl (4-phenylthiazol-2-yl)acetate and salt 3 in 52% yield, eluent chloroform-methanol $(10: 1)$, m.p. $176^{\circ} \mathrm{C}$ (orange crystals from EtOH$) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3126 \mathrm{~m}$ and $1630 \mathrm{~s} ; \mathrm{m} / \mathrm{z}$ $345\left(\mathrm{M}^{+}, 100 \%\right), 273\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{CO}_{2}, 21\right), 227(28), 186$ (30), 170 (17), 166 (10), 134 ($\mathrm{PhC}-\mathrm{CHS}^{+}, 31$), 102 ($\mathrm{PhC} \equiv \mathrm{CH}^{+}$, 16), 89 (30), 77 ($\mathrm{Ph}^{+}, 20$), 69 (20), 63 (14), 51 (17), 46 (47), 45 (39), $43\left(\mathrm{MeN}^{+}, 68\right)$ and $42\left(\mathrm{CH}_{2} \mathrm{~N}_{2}{ }^{++}\right.$, 34) (Found: C, 55.35 ; $\mathrm{H}, 4.4 . \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 55.63 ; \mathrm{H}, 4.38 \%$).

5-[(Benzothiazol-2-yl)cyanomethylene]-3-methyl-4,5-di-hydro-1,2,3-thiadiazol-3-ium-4-ide 14.-PPrepared from (benzo-thiazol-2-yl)acetonitrile and salt 3 in 64% yield, eluent ethyl acetate, m.p. $304^{\circ} \mathrm{C}$ (orange needles from HOAc); $\boldsymbol{v}_{\text {max }}(\mathrm{KBr})$ / $\mathrm{cm}^{-1} 3078 \mathrm{~m}$ and $2181 \mathrm{~s} ; \mathrm{m} / \mathrm{z} 272\left(\mathrm{M}^{+}, 36 \%\right.$), 229 ($\mathrm{M}^{+}$$\mathrm{MeN}_{2}, 13$), 202 (11), 198 (22), 94 (11), 69 (21), 63 (10), 45 (18), $43\left(\mathrm{MeN}_{2}{ }^{+}, 100\right)$ and $42\left(\mathrm{CH}_{2} \mathrm{~N}_{2}{ }^{++}, 17\right)$ (Found: C, $52.8 ; \mathrm{H}, 3.0$. $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{~S}_{2}$ requires C, $52.92 ; \mathrm{H}, 2.96 \%$).

5-[(Benzothiazol-2-yl)(ethoxycarbonyl)methylene]-3-methyl-4,5-dihydro-1,2,3-thiadiazol-3-ium-4-ide 15.-Prepared from ethyl (benzothiazol-2-yl)acetate and salt 3 in 69% yield, eluent ethyl acetate, m.p. $216^{\circ} \mathrm{C}$ (orange crystals from HOAc); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3148 \mathrm{~m}$ and 1644 s ; $m / z 319\left(\mathrm{M}^{++}, 93 \%\right), 247$ ($\mathrm{M}^{++}-\mathrm{Et}-\mathrm{MeN}_{2}, 20$), 232 (22), 204 (35), 201 (40), 173 (37), 160 (60), 109 (27), 108 (24), 69 (60), 46 (30), $43\left(\mathrm{MeN}_{2}{ }^{+}, 100\right)$ and $42\left(\mathrm{CH}_{2} \mathrm{~N}_{2}{ }^{-+}\right.$, 29) (Found: C, 52.5; H, 4.1. $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 52.65 ; \mathrm{H}, 4.10 \%$).

5-[(Ethoxycarbonyl)(5-phenyloxazol-2-yl)methylene $]$-3-methyl-4,5-dihydro-1,2,3-thiadiazol-3-ium-4-ide 16.--Prepared from ethyl (5 -phenyloxazol-2-yl)acetate and salt 3 in 33% yield, eluent chloroform-methanol (15:1), m.p. $180^{\circ} \mathrm{C}$ (brown crystals from EtOH); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3129 \mathrm{~m}$ and $1618 \mathrm{~s} ; \mathrm{m} / \mathrm{z}$ $329\left(\mathrm{M}^{+}, 100 \%\right), 257\left(\mathrm{M}^{+}+\mathrm{CO}_{2} \mathrm{Et}, 41\right), 158$ (15), 125 (14), $105\left(\mathrm{PhCO}^{+}, 23\right), 77\left(\mathrm{Ph}^{+}, 36\right), 43\left(\mathrm{MeN}_{2}{ }^{+}, 41\right)$ and 42 $\left(\mathrm{CH}_{2} \mathrm{~N}_{2}{ }^{++}\right.$, 16) (Found: $\mathrm{C}, 58.3 ; \mathrm{H}, 4.7 . \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 58.35 ; \mathrm{H}, 4.59 \%$).

5-[(Benzoxazol-2-yl)(ethoxycarbonyl)methylene $]$-3-methyl-4,5-dihydro-1,2,3-thiadiazol-3-ium-4-ide 17.-Prepared from ethyl (benzoxazol-2-yl)acetate and salt 3 in 68% yield, eluent diethyl ether, m.p. $125-130^{\circ} \mathrm{C}$ (orange crystals from $\mathrm{CHCl}_{3}-$ $\left.\mathrm{Et}_{2} \mathrm{O}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3156 \mathrm{~m}$ and $1640 \mathrm{~s} ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 1595 s ; $m / z 303\left(\mathrm{M}^{++}, 100 \%\right), 231\left(\mathrm{M}^{++}-\mathrm{Et}-\mathrm{MeN}_{2}, 47\right), 188$ (16), 185 (25), 158 (18), 144 (22), 101 (11), 64 (15), $43\left(\mathrm{MeN}^{2}{ }^{+}\right.$, 40) and $42\left(\mathrm{CH}_{2} \mathrm{~N}_{2}{ }^{-+}\right.$, 13) (Found: C, 55.3; H, 4.4. $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires C, $55.43 ; \mathrm{H}, 4.32 \%$).

4-tert-Butyl-5-(diacetylmethylene)-2-methyl-2,5-dihydro-1,2,3-thiadiazole 18.-Prepared from pentane-2,4-dione and salt 4 in 34% yield, eluent diethyl ether-hexane ($2: 1$), m.p. $87^{\circ} \mathrm{C}$ (yellow crystals from $\mathrm{Et}_{2} \mathrm{O}$-hexane); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1655 \mathrm{~s}$; $m / z 254\left(\mathrm{M}^{+}, 12 \%\right), 239\left(\mathrm{M}^{++}-\mathrm{Me}, 11\right), 211\left(\mathbf{M}^{++}-\mathrm{MeCO}\right.$ or $\left.\mathrm{MeN}_{2}, 21\right), 197\left(\mathrm{M}^{+}-\mathrm{Bu}^{+}, 31\right)$ and $43\left(\mathrm{MeN}_{2}{ }^{+}\right.$or MeCO^{+}, 100) (Found: C, 56.5; H, 7.0. $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 56.67$; H, 7.13%).

5-[Acetyl(methoxycarbonyl)methylene]-4-tert-butyl-2-methyl-2,5-dihydro-1,2,3-thiadiazole 19.-Prepared from methyl acetoacetate and salt 4 in 41% yield, eluent diethyl ether-hexane
(2:1), m.p. $91{ }^{\circ} \mathrm{C}$ (yellow crystals from $\mathrm{Et}_{2} \mathrm{O}$-hexane); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1700 \mathrm{~s} ; m / z 270\left(\mathrm{M}^{+}, 17 \%\right), 255\left(\mathrm{M}^{+}-\mathrm{Me}\right.$, 24), $227\left(\mathrm{M}^{++}-\mathrm{MeCO}\right.$ or $\left.\mathrm{MeN}_{2}^{+}, 14\right), 213\left(\mathrm{M}^{+}-\mathrm{Bu}^{\mathbf{t}}, 20\right)$, 153 (11) and $43\left(\mathrm{MeN}_{2}{ }^{+}\right.$or MeCO^{+}, 100) (Found: C, 53.4; H, 6.6. $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 53.31 ; \mathrm{H}, 6.71 \%$).

4-tert-Butyl-5-[bis(methoxycarbonyl)methylene]-2-methyl-

 2,5-dihydro-1,2,3-thiadiazole 20.-Prepared from dimethyl malonate and salt 4 in 88% yield, eluent diethyl ether-hexane (4:1), m.p. $118^{\circ} \mathrm{C}$ (yellow crystals from $\mathrm{Et}_{2} \mathrm{O}$-hexane); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1715 \mathrm{~s}$ and $1595 \mathrm{~s} ; m / z 286\left(\mathrm{M}^{++}, 23 \%\right), 271$ $\left(\mathrm{M}^{+}+\mathrm{Me}, 100\right), 255\left(\mathrm{M}^{+}-\mathrm{OMe}, 20\right), 211$ (11), 183 (16), 155 (33), 111 (15), 59 (MeOCO^{+}, 32), 57 (Bu^{t+} 12), 45 (11), and $43\left(\mathrm{MeN}_{2}{ }^{+}, 40\right)$ (Found: C, 50.2; H, 6.3. $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 50.34 ; \mathrm{H}, 6.34 \%$).4-tert-Butyl-5-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)-2-methyl-2,5-dihydro-1,2,3-thiadiazole 21.-Prepared from 2,2-dimethyl-1,3-dioxane-4,6-dione and salt 4 in 52% yield, eluent diethyl ether, m.p. $196^{\circ} \mathrm{C}$ decomp. (yellow crystals from EtOAc); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1715 \mathrm{~s}$ and $1620 \mathrm{~s} ; m / z 298\left(\mathrm{M}^{+}, 3 \%\right)$, $196\left(\mathrm{M}^{+}+\mathrm{Me}_{2} \mathrm{CO}-\mathrm{CO}_{2}, 11\right), 181(\mathrm{~m} / \mathrm{z} 196-\mathrm{Me}, 22), 153$ ($m / z 181-\mathrm{CO}$ or $\mathrm{N}_{2}, 38$) and $43\left(\mathrm{MeN}_{2}{ }^{+}, 100\right)$ (Found: C, $52.05 ; \mathrm{H}, 6.0 . \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires C, $52.33 ; \mathrm{H}, 6.08 \%$).

4-tert-Butyl-5-[cyano(ethoxycarbonyl)methylene]-2-methyl-2,5-dihydro-1,2,3-thiadiazole 22.-Prepared from ethyl cyanoacetate and salt 4 in 77% yield, eluent diethyl ether-hexane (1:1), m.p. $210^{\circ} \mathrm{C}$ (yellow crystals from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2193 \mathrm{~s}$ and $1607 \mathrm{~s} ; m / z 267\left(\mathrm{M}^{+}, 39 \%\right), 252$ ($\mathbf{M}^{+}+\mathrm{Me}, 21$), $227\left(\mathbf{M}^{++}-\mathrm{CH}_{2}-\mathrm{CN}, 100\right), 199$ (35), 57 $\left(\mathrm{Bu}^{t+}, 14\right)$ and $43\left(\mathrm{MeN}_{2}{ }^{+}\right.$, 63) (Found: C, 53.8; H, 6.4. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 53.91 ; \mathrm{H}, 6.41 \%$).

5-Acetylmethylene-4-tert-butyl-2-methyl-2,5-dihydro-1,2,3thiadiazole 23.-Compound 23 was prepared in 37% yield by acid catalysed methanolysis of compound 18 at reflux for 15 \min. The reaction was worked up by pouring the reaction mixture into water, extraction with diethyl ether and then chromatography on silica gel with diethyl ether-hexane ($1: 1$) as the eluent to give the title compound, m.p. $36-40^{\circ} \mathrm{C}$ (brown solid); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1521 \mathrm{~s} ; m / z 212\left(\mathrm{M}^{++}, 24 \%\right), 197\left(\mathrm{M}^{++}-\right.$ $\mathrm{Me}, 45), 155(12), 57\left(\mathrm{Bu}^{t^{+}}, 18\right)$ and $43\left(\mathrm{MeN}_{2}{ }^{+}, 100\right)$ (Found: $\mathbf{M}^{++}, 212.09847$. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}$ requires $M, 212.0983$).

4-tert-Butyl-5-(methoxycarbonyl)methylene-2-methyl-2,5-di-hydro-1,2,3-thiadiazole 24.-This compound was similarly prepared by methanolysis of heterocycle 19 or 20 in 60 and 39% yield, respectively, m.p. $110-112^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$-hexane); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1615 \mathrm{~s} ; m / z 228\left(\mathrm{M}^{++}, 37 \%\right), 213\left(\mathrm{M}^{++}-\mathrm{Me}\right.$, 100), 155 (16), 125 (17) and $43\left(\mathrm{MeN}_{2}{ }^{+}\right.$, 33) (Found: C, 52.5; H, 6.9. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 52.61 ; \mathrm{H}, 7.06 \%$).

4-tert-Butyl-5-[(ethoxycarbonyl)(5-phenyloxazol-2-yl)meth-ylene]-2-methyl-2,5-dihydro-1,2,3-thiadiazole 25.-Prepared from ethyl (5 -phenyloxazol-2-yl)acetate and salt 4 in 29% yield, eluent diethyl ether-hexane ($1: 1$), m.p. $146^{\circ} \mathrm{C}$ (yellow crystals from $\mathrm{Et}_{2} \mathrm{O}$-hexane); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1598 \mathrm{~s} ; m / z 385\left(\mathrm{M}^{++}\right.$, 34%), 370 (\mathbf{M}^{+}- $\mathrm{Me}, 89$), 342 (15), 227 (45), 199 (26), 105 $\left(\mathrm{PhCO}^{+}, 82\right), 91(17), 77\left(\mathrm{Ph}^{+}, 100\right)$ and $43\left(\mathrm{MeN}_{2}^{+}, 81\right)$ (Found: C, 62.45; H, 6.0. $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 62.32 ; \mathrm{H}$, 6.01%).

5-[(Benzoxazol-2-yl)(ethoxycarbonyl)methylene]-4-tert-but-yl-2-methyl-2,5-dihydro-1,2,3-thiadiazole 26.-Prepared from ethyl (benzoxazol-2-yl)acetate and salt 4 in 53\% yield, eluent diethyl ether-hexane (3:1), m.p. $134^{\circ} \mathrm{C}$ (yellow crystals from $\mathrm{Et}_{2} \mathrm{O}$-hexane); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1610 \mathrm{~s}, 1597 \mathrm{~s}$ and $1561 \mathrm{~s} ; m / z$
$359\left(\mathrm{M}^{++}, 36 \%\right), 344\left(\mathrm{M}^{+}-\mathrm{Me}, 100\right), 316\left(\mathrm{M}^{+}-\mathrm{MeN}_{2}, 20\right)$, 272 (10), 270 (12), 227 (69), 199 (30) and $43\left(\mathrm{MeN}_{2}{ }^{+}, 34\right)$ (Found: C, $60.15 ; \mathrm{H}, 6.0 . \mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 60.15 ; \mathrm{H}$, 5.89%).

4-tert-Butyl-5-[cyano(4-phenylthiazol-2-yl)methylene]-2-methyl-2,5-dihydro-1,2,3-thiadiazole 27.-Prepared from (4-phenylthiazol-2-yl)acetonitrile and salt 4 in 68% yield, eluent diethyl ether-hexane (1:1), m.p. $223^{\circ} \mathrm{C}$ (brown crystals from $\mathrm{EtOH}) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2180 \mathrm{~s} ; m / z 354\left(\mathrm{M}^{+}, 100 \%\right), 339$ (M^{++}- $\mathrm{Me}, 16$), 314 (29), 286 (11), 134 ($\mathrm{PhC}-\mathrm{CHS}^{+}, 31$), 102 $\left(\mathrm{PhC}_{\mathrm{C}} \mathrm{CH}^{+}, 13\right), 89(22), 77\left(\mathrm{Ph}^{+}, 11\right), 57\left(\mathrm{Bu}^{+}, 29\right), 45(16)$ and $43\left(\mathrm{MeN}_{2}{ }^{+}\right.$, 86) (Found: C, 61.1; H, 5.3. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{~S}_{2}$ requires $\mathrm{C}, 60.99 ; \mathrm{H}, 5.12 \%$).

5-[(Benzothiazol-2-yl)cyanomethylene]-4-tert-butyl-2-meth-yl-2,5-dihydro-1,2,3-thiadiazole 28.-Prepared from (benzo-thiazol-2-yl)acetonitrile and salt 4 in 89% yield, eluent diethyl ether-hexane ($10: 1$), m.p. $247^{\circ} \mathrm{C}$ (orange crystals from EtOH); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2184 \mathrm{~s} ; \mathrm{m} / \mathrm{z} 328\left(\mathrm{M}^{++}, 100 \%\right)$, $313\left(\mathrm{M}^{++}-\mathrm{Me}\right.$, 26), $288\left(\mathbf{M}^{+}-\mathrm{CH}_{2}-\mathrm{CN}, 52\right), 285\left(\mathrm{M}^{++}-\mathrm{MeN}_{2}, 13\right), 260$ (13) and $43\left(\mathrm{MeN}_{2}{ }^{+}\right.$, 24) (Found: C, 58.3; H, 4.9. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{~S}_{2}$ requires $\mathrm{C}, 58.51 ; \mathrm{H}, 4.91 \%$).

5-[(Benzothiazol-2-yl)(ethoxycarbonyl)methylene]-4-tert-butyl-2-methyl-2,5-dihydro-1,2,3-thiadiazole 29.-Prepared from ethyl (benzothiazol-2-yl)acetate and salt 4 in 49% yield, eluent diethyl ether-hexane ($1: 1$), m.p. $99^{\circ} \mathrm{C}$ (orange-red crystals from EtOH); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1686s and $1652 \mathrm{~s} ; \mathrm{m} / \mathrm{z} 375$ $\left(\mathbf{M}^{+}, 61 \%\right), 360\left(\mathbf{M}^{+}+\mathbf{M e}, 42\right), 332\left(\mathbf{M}^{+}-\mathbf{M e N}_{2}, 13\right), 318$ $\left(\mathrm{M}^{+}+\mathrm{Bu}^{t}, 35\right), 302$ (18), 286 (44), 258 (18), 243 (14), 227 (M^{+}- benzothiazole $-\mathrm{CH}_{2}, 100$), 199 (30), 109 (17) and 43 ($\mathrm{MeN}_{2}{ }^{+}$, 47) (Found: C, 57.3; H, 5.5. $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires C, $57.58 ; \mathrm{H}, 5.64 \%$).

4-tert-Butyl-5-[(ethoxycarbonyl)(4-phenylthiazol-2-yl)-methylene]-2-methyl-2,5-dihydro-1,2,3-thiadiazole 30.-Prepared from ethyl (4-phenylthiazol-2-yl)acetate and salt 4 in 45% yield, eluent diethyl ether-hexane ($1: 1$) and ethyl acetatehexane ($1: 10$), m.p. $78^{\circ} \mathrm{C}$ (red crystals from pentane); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1681 \mathrm{~s} ; m / z 401\left(\mathrm{M}^{++}, 100 \%\right), 386\left(\mathrm{M}^{+}-\mathrm{Me}\right.$, 42), $344\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}, 13\right), 328\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Et}, 14\right), 312(15), 284$ (12), 227 (91), 199 (25), 155 (15), 134 ($\mathrm{PhC}^{2} \mathrm{CHS}^{+}$, 40), 102 $\left(\mathrm{PhC}_{\mathrm{C}} \mathrm{CH}^{+}, 10\right), 91(22), 57\left(\mathrm{Bu}^{+}, 24\right)$ and $43\left(\mathrm{MeN}_{2}{ }^{+}, 59\right)$ (Found: C, 60.0; H, 5.7. $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires C, 59.82; H , 5.77%).

Crystal Structure of Compound 21.-Crystal data. $\mathrm{C}_{13} \mathrm{H}_{18}{ }^{-}$ $\mathrm{N}_{2} \mathrm{O}_{4} \mathrm{~S}, M=298.35$. Triclinic, $a=9.002(1), b=11.914(1)$, $c=14.892(1) \quad \AA, \quad \alpha=73.764(8), \quad \beta=80.071(7), \quad \gamma=$ $72.764(9)^{\circ}, V=1457.6(2) \AA^{3}$ (by least-squares refinement on diffractometer angles for 20 automatically centred reflections, $\lambda=1.54178 \AA$), space group P ((No. 2), $Z=4, D_{\mathrm{x}}=1.36 \mathrm{~g}$ cm^{-3}. Yellow blocks from dichloromethane-hexane, crystal dimensions $0.30 \times 0.30 \times 0.20 \mathrm{~mm}, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=21.16 \mathrm{~cm}^{-1}$.

Data Collection and Processing.-Siemens P4-PC diffractometer, $\omega-2 \theta$ mode with ω scan width $0.60^{\circ}, \omega$ scan speed $2-60 \mathrm{deg} \mathrm{min}^{-1}$, graphite-monochromatized $\mathrm{Cu}-\mathrm{K} \alpha$ radiation; 3899 reflections measured $\left(6.22 \leqslant 2 \theta \leqslant 100.9^{\circ}\right.$, $-8 \leqslant h \leqslant+8, \quad-11 \leqslant k \leqslant+11, \quad 0 \leqslant l \leqslant+14), \quad 3024$ unique of which 2797 are observed $[I>2 \sigma(I)$, merging $R=$ 0.0668 after absorption correction (max., min. transmission factors $=0.1940425$)]. Three check reflections measured every 100 reflections showed no significant decrease in intensity.

Structure Analysis and Refinement.-The structure was refined using direct methods, full-matrix least-squares on F^{2}
with all non-hydrogen atoms anisotropic and hydrogen atoms with isotropic U. Final $R 1$ and $w R 2$ values are 0.0411 and 0.1242 . Siemens SHELXTL PLUS (PC version) ${ }^{12}$ and SHELXL-93 ${ }^{13}$ programs were used for calculations and drawings.

Acknowledgements

Financial support from the N.F.W.O., the Ministerie voor Wetenschapsbeleid and the University is gratefully acknowledged. This work has been accomplished with fellowships from the I.W.O.N.L. (L. B.) and the N.F.W.O. (W. D). L. V. M. is a Research Associate of the National Fund for Scientific Research.

References

1 (a) C. D. Hurd and R. I. Mori, J. Am. Chem. Soc., 1955, 77, 5359; (b) R. N. Butler and D. A. O'Donoghue, J. Chem. Soc., Perkin Trans. I, 1982, 1223.
2 H. R. Krüger, Ger. Pat. 2636 994, 1978 (Chem. Abstr., 1978, 88, 152630k); E. Schaumann, J. Ehlers and H. Mrotzek, Liebigs Ann. Chem., 1979, 1734.
3 G. L'abbé, P. Delbeke, L. Bastin, W. Dehaen and S. Toppet, J. Heterocycl. Chem., 1993, 30, 301.

4 N. Lozac'h, in Comprehensive Heterocyclic Chemistry, eds. A. R. Katritzky and C. W. Rees, Pergamon, Oxford, 1984, vol. 6, p. 1049.
5 R. M. Christie, A. S. Ingram, D. H. Reid and R. G. Webster, J. Chem.

Soc., Chem. Commun., 1973, 92; D. H. Reid and R. G. Webster, J. Chem. Soc., Perkin Trans. 1, 1977, 854; R. M. Christie, D. H. Reid, R. Walker and R. G. Webster, J. Chem. Soc., Perkin Trans. I, 1978, 195; R. M. Christie, D. H. Reid and R. Wolfe-Murray, J. Chem. Soc., Perkin Trans. 1, 1979,926; A. G. Briggs, J. Czyzewski and D. H. Reid, J. Chem. Soc., Perkin Trans. 1, 1979, 2340; J. Czyzewski and D. H. Reid, J. Chem. Soc., Perkin Trans. 1, 1983, 777.
6 L. Capuano, P. Boschat, I. Müller, R. Zander, V. Schramm and E. Hädicke, Chem. Ber., 1983, 116, 2058.

7 H. McNab, Chem. Soc. Rev., 1978, 7, 345.
8 M. L. Huggins, J. Am. Chem Soc., 1953, 75, 4126.
9 O. L.Stiefvater, Chem. Phys., 1976, 13, 73; S. Auricchio, S. Brückner, L. Malpezzi Giunchi, V. A. Kozinsky and O. V. Zelenskaja, J. Heterocycl. Chem., 1980, 17, 1217.

10 G. L'abbé, L. Bastin, D. Vlieghe and L. Van Meervelt, J. Chem. Soc., Perkin Trans. 1, 1993, 3051.
11 N. Saito and C. Tanaka, J. Pharm. Soc. Jpn., 1956, 76, 305 (Chem. Abstr., 1956, 53, 13873h); P. Baudet and C. Otten, Helv. Chim. Acta, 1970, 53, 1683; H. Wamhoff and C. Materne, Liebigs Ann. Chem., 1973, 573; H. Schäfer and K. Gewald, J. Prakt. Chem., 1974, 316, 684; K. Saito, S. Kambe and Y. Nakano, Synthesis, 1983, 210.

12 SHELXTL, 1990, PC Manual Version 4.1 Siemens Analytical X-Ray Instruments, Inc., Madison, Wisconsin, USA.
13 G. M. Sheldrick, SHELXTL, 1993, Manual.

Received 25th March 1994
Accepted 31st May 1994

[^0]: * $1 \mathrm{cal}=4.184 \mathrm{~J}$.

